-
Hash functions are special functions where you insert something you get a unique fingerprint and finding the initial input by another user is not likely.
-
Hash functions are used in cryptocurrancies like bitcoin to establish a blockchain.
This is performed through mining. When software wants to add a new block to the blockchain, this is the procedure it follows. Whenever a new block arrives, all the contents of the blocks are first hashed. If the hash is lesser than the difficulty target, then it is added to the blockchain and everyone in the community acknowledges the new block.
However, it is not as simple as that. You will have to be extremely lucky to get a new block just like that. This is where the nonce comes in. The nonce is an arbitrary string that is concatenated with the hash of the block. After that this concatenated string is hashed again and compared to the difficulty level. If it is not less than the difficulty level, then the nonce is changed and this keeps on repeating a million times until finally, the requirements are met. When that happens the block is added to the blockchain.
Hash rate basically means how fast these hashing operations are taking place while mining. A high hash rate means more people and software machines are taking part in the mining process and as a result, the system is running smoothly. If the hash rate is too fast the difficulty level is increased. If the hash rate becomes too slow then the difficulty level is decreased. (blockgeeks.com)
- In cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where a ≠ b but H ( a ) = H ( b ).[1]:136 The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions;[1]:136 the harder they are to find, the more cryptographically secure the hash function is. Wikipedia